优胜从选择开始,我们是您省心的选择!—— 无忧期刊网
帮助中心
期刊发表
您的位置: 主页 > 论文范文 > 医学论文 > 内科医学论文 > 正文

声触诊弹性成像在慢性肾脏病中的应用

作者:文阅期刊网 来源:文阅编辑中心 日期:2022-09-20 08:49人气:
  摘    要:目的分析肾脏硬度与慢性肾脏病(CKD)不同分期和类型的相关性,旨在探讨声触诊弹性成像技术(STE)能否成为动态评估CKD、区分CKD类型的新方法。方法选取2020年6月至2021年12月在空军军医大学唐都医院肾脏内科治疗的CKD患者212例。使用STE测量右肾中部肾实质平均杨氏模量(Emean),比较不同分期、不同类型CKD肾脏Emean差异,并基于统计结果进一步分析IgA肾病不同Lee分级肾脏Emean差异。结果不同尿白蛋白/肌酐(ACR)分期CKD患者肾脏Emean差异具有统计学意义(P<0.01),A3期(ACR≥300mg/g)患者肾脏Emean显著低于A1期(ACR<30mg/g,P<0.01)和A2期(30≤ACR<300mg/g,P<0.05),且A1~A3期肾脏Emean呈下降趋势。不同类型CKD患者肾脏Emean差异具有统计意义(P<0.05),且IgA肾病患者肾脏Emean显著高于其他类型CKD(P<0.05)。不同Lee分级IgA肾病患者之间肾脏Emean差异具有显著统计学意义(P<0.01)。LeeⅠ级患者的肾脏Emean高于LeeⅡ级(P<0.05)、LeeⅢ级(P<0.01)和LeeⅣ级(P<0.01)患者,且随着IgA肾病进展,肾脏Emean呈下降趋势。结论 STE技术测得的肾脏硬度与肾功能损害密切相关,可在一定程度上为CKD的分期和分型评估提供指导。
 
  关键词:声触诊弹性成像;慢性肾脏病;平均杨氏模量; lgA肾病;
 
  Application of sound touch elastography in chronic kidney disease
 
  CHEN Yang LI Qiaoying SUN Jifeng LIU Hongbao
 
  Department of Nephrology, Air Force Medical University Department of Ultrasound Medicine,
 
  Tangdu Hospital, Air Force Medical University
 
  Abstract:
 
  Objective To analyze the correlation between kidney stiffness and different stages and types of chronic kidney disease (CKD), aiming to explore whether sound touch elastography (STE) can be a new method for dynamic evaluation and classification of CKD. Methods A total of 212 CKD patients treated in the Department of Nephrology, Tangdu Hospital, Air Force Medical University from June 2020 to December 2021 were enrolled in this study. STE was used to measure the mean Young’s modulus (Emean) of the renal parenchyma in the middle of the right kidney. The differences of Emean in different stages and types of CKD were compared, and the differences of Emean in different Lee grades of IgA nephropathy were further analyzed based on the statistical results. Results The differences of renal Emean of CKD patients with different albumin-to-creatinine ratio (ACR) stages were significantly different (P<0.01). The renal Emean of patients with stage A3 (ACR≥300 mg/g) was significantly lower than that of patients with stage A1 (ACR<30 mg/g, P<0.01) and A2 (30≤ACR<300 mg/g, P<0.05), and the renal Emean showed a downward trend in stage A1~A3. There were statistically differences in renal Emean in CKD patients with different types (P<0.05), and the renal Emean in patients with IgA nephropathy was significantly higher than that in other types of CKD (P<0.05). There were significant differences in renal Emean in IgA nephropathy patients with different Lee grades (P<0.01). The renal Emean of patients with Lee Ⅰwas higher than that of patients with Lee II (P<0.05), Lee III (P<0.01), and Lee IV (P<0.01). Meanwhile, the renal Emean showed a downward trend with the progression of IgA nephropathy. Conclusion The kidney stiffness measured by STE is closely related to renal impairment, which can provide guidance for the staging and typing evaluation of CKD to a certain extent.
 
  Keyword:
 
  sound touch elastography; chronic kidney disease; mean Young's modulus; IgA nephropathy;
 
  慢性肾脏病(chronic kidney disease,CKD)是全球严重威胁人类健康的疾病之一,在成年人群中其患病率已超过10%[1,2,3,4,5]。无创诊断工具的开发和应用对CKD的评估和纵向监测极为重要。声触诊弹性成像(sound touch elastography,STE)是一种最新的超声弹性成像技术,其优越性已在肝脏、乳腺和甲状腺组织等研究中得到报道[6,7,8,9,10,11]。但迄今为止,尚无研究探讨STE在CKD患者中的应用价值。本研究应用STE技术测量CKD患者肾脏硬度,并分析不同分期、不同类型CKD患者硬度的差异,旨在探讨STE技术能否成为动态监测CKD、评估CKD类型的新方法。
 
  1 对象和方法
 
  1.1 对象
 
  选取2020年6月至2021年12月在空军军医大学唐都医院肾脏内科接受治疗的CKD患者212例纳入本横断面研究。纳入标准:①年龄18~75岁;②符合改善全球肾脏病预后组织(Kidney Disease: Improving Global Outcomes,KDIGO)指南CKD诊断标准:肾脏结构或功能损害超过3个月,并对健康产生影响;③同意接受肾脏STE检查。排除标准:①有急性肾损伤或肾脏结石、积水、囊肿、肿瘤的患者;②超声检查过程中不能按照超声医师的指示控制呼吸的患者;③接受肾移植或孤立肾的患者。本研究通过空军军医大学唐都医院伦理委员会伦理审查批准(许可证号:K202107-10),所有参与者均签署知情同意书。
 
  1.2 方法
 
  1.2.1 收集患者临床资料
 
  详细记录所有入组患者一般人口学数据,如年龄、性别、体质量、血压等。
 
  1.2.2 依据KDIGO指南对CKD蛋白尿进行分期
 
  本研究利用尿白蛋白与肌酐比值(albumin-to-creatinine ratio,ACR)对患者进行分期。A1期:ACR<30 mg/g,尿白蛋白正常或轻度升高;A2期:30≤ACR<300 mg/g,尿白蛋白中度升高;A3期:ACR≥300 mg/g,尿白蛋白显著升高。
 
  1.2.3 对IgA肾病进行Lee病理分级
 
  Ⅰ级:肾小球大多正常,偶见系膜轻度增宽,节段性,伴或者不伴细胞增生,无肾小管及间质病变;Ⅱ级:肾小球示局灶系膜增生、硬化(<50%),罕见新月体,无肾小管及间质病变;Ⅲ级:肾小球示弥漫系膜增生、增宽(偶呈局灶节段改变),偶可见小新月体及球囊黏连。肾小管及间质示:局灶间质水肿,偶见细胞浸润,罕见小管萎缩;Ⅳ级:重度弥漫系膜增生、硬化,部分/全部肾小球硬化,新月体形成(<45%)。肾小管及间质示:肾小管萎缩,间质浸润,偶见泡沫细胞。
 
  1.2.4 测量肾脏硬度
 
  使用Resona7彩色多普勒超声诊断仪(深圳迈瑞公司),选用SC6-1U凸阵探头,频率1~6 MHz,受试者取俯卧位,屏气时进行右肾中部肾实质的STE检查,并记录平均杨氏模量(mean Young’s modulus,Emean)。由一位有五年以上经验的超声医师进行操作,所有参数测量3次取平均值。
 
  1.3 统计学分析
 
  所有分析均使用SPSS 20.0统计软件进行。实验所得数据均先进行正态性检验。非正态分布的连续变量表示为M(Q1,Q3),多组间比较采用Kruskal-Wallis检验。双尾P<0.05表示差异具有统计学意义。
 
  2 结果
 
  2.1 不同分期CKD患者人口学特征
 
  根据ACR分期将CKD患者分为3期,其中A1期患者43例,A2期患者79例,A3期患者90例。表1描述了不同分期CKD患者年龄、性别、体质量指数和血压情况。
 
  2.2 不同分期CKD患者肾脏Emean比较
 
  A1期患者肾脏Emean为7.60(6.83,8.92)kPa,A2期患者肾脏Emean为7.40(6.24,8.82)kPa,A3期患者肾脏Emean为6.97(5.75,7.62)kPa,不同ACR分期之间肾脏Emean差异具有统计学意义(P<0.01)。组间两两比较显示,A3期患者肾脏Emean显著低于A1期(P<0.01)和A2期(P<0.05)且A1~A3期Emean呈下降趋势(图1)。
 
  2.3 不同类型CKD患者肾脏Emean比较
 
  依据临床诊断及病理资料将CKD分为原发性肾小球疾病(primary glomerular nephropathy,PGN)和继发性肾脏疾病(secondary renal disease,SRD),212例CKD患者中PGN患者156例,SRD患者56例。PGN中IgA肾病47例,肾小球肾炎47例,肾病综合征62例。而SRD中糖尿病肾病35例,高血压肾病12例,狼疮性肾炎和紫癜性肾炎共9例。不同类型CKD患者肾脏Emean差异有统计学意义(P<0.05)。其中,其他各类型CKD患者肾脏Emean显著低于IgA肾病患者(P<0.05,表2)。
 
  2.4 IgA肾病不同Lee分级肾脏Emean比较
 
  基于IgA肾病Emean显著较高的结果,我们进一步分析了不同Lee分级IgA肾病患者的肾脏Emean差异。47例IgA肾病患者中,Lee Ⅰ级7例,Lee Ⅱ级6例,Lee Ⅲ级21例,Lee Ⅳ级13例。各级IgA肾病患者之间肾脏Emean差异具有统计学意义(P<0.01)。组间两两比较显示,Lee Ⅰ级患者的肾脏Emean高于Lee Ⅱ级(P<0.05)、Lee Ⅲ级(P<0.01) 和Lee Ⅳ级(P<0.01)患者,其余各组间Emean差异无统计学意义,但随着IgA肾病进展,Emean呈下降趋势(图2)。
 
  3 讨论
 
  随着CKD发病率和死亡率的逐渐增加,肾脏损害的评估变得越来越重要。OPHIR等[12]提出的超声弹性成像技术是一种新兴的检测手段,可以定性及定量测定组织杨氏模量值,反映组织硬度的改变。剪切波弹性成像技术(shear wave elastrography,SWE)是超声弹性成像技术中的一种,目前已在肌肉、肝脏、乳腺、甲状腺及肾脏等领域中被广泛研究[13,14,15,16,17]。然而,最近的研究在评估SWE测量的肾组织硬度与肾脏损伤之间的关系时有着相互矛盾的发现[18,19]。一些研究认为随着肾脏损伤的加重,SWE测得的硬度值增加[20,21,22]。相反,也有研究者报告CKD患者肾脏硬度随肾功能不全进展而下降[23,24,25,26,27]。因此,SWE在CKD中的作用还有待进一步探索和验证。STE是最新的SWE技术之一,它是基于超宽波束追踪技术,能在几百微秒内探索到所有的剪切波信息并快速计算,获得高质量的二维彩色组织硬度成像图,同时可以实时定量测量组织硬度,克服了传统弹性超声的诸多缺点。基于此,探讨STE是否可以作为一种有效的非侵入性工具用于动态监测CKD,评估CKD类型具有重要意义。
 
  在这项研究中,新兴的STE技术被用来测量212例CKD患者的肾脏硬度。本研究首先探索了不同分期CKD患者肾脏硬度的差异,结果显示,CKD A1~A3期肾脏Emean呈下降趋势,这支持了ASANO和BOB等[23,24,25,26,27]的观点,提示CKD患者肾脏硬度的影响因素不仅只有纤维化,可能还存在其他因素,且这些因素的影响甚至可能超过纤维化,这一点将在今后的研究中进行探讨。本研究分析了不同类型CKD患者的肾脏硬度,结果表明,不同类型CKD患者肾脏硬度存在显著差异,其中IgA肾病患者的肾脏Emean显著高于其他类型CKD患者。IgA肾病是目前全球范围内最常见的一种PGN,30%~40%的患者在诊断后20年内进展为终末期肾病,是导致终末期肾病的首要PGN[28]。目前,IgA肾病尚无特异性诊断手段,但据报道其病理改变与预后密切相关,可根据患者病理改变程度采用不同的治疗方法,以保护肾脏,延缓病情进展[29,30]。王亮等[31]发现IgA肾病患者的临床分期与肾脏硬度呈负相关,即随着IgA肾病的进展,肾脏硬度逐渐下降;姚俊东等[32]的研究表明随着肾功能下降,肾脏硬度逐渐降低。这些结果提示肾脏硬度也有望在IgA肾病评估和动态监测方面发挥作用。因此,本研究进一步探讨了Emean在IgA肾病病理分级中的应用。依据Lee分级对IgA肾病患者进行亚组分析发现,Lee Ⅰ级IgA肾病患者的肾脏Emean显著高于Lee Ⅱ级、Ⅲ级和Ⅳ级的IgA肾病患者,Emean随着病情进展呈下降趋势,与王亮和姚俊东等[31,32]研究结果一致。这些结果表明肾脏Emean在一定程度上可为鉴别IgA肾病及其病理分级提供参考依据。
 
  本研究有以下几个不足:首先,本研究缺乏正常对照组,因此无法评估STE鉴别CKD患者和健康受试者的能力。其次,本研究样本量较少,且为单中心研究,需要包括更多参与者的多中心研究来进一步探索。
 
  综上所述,STE技术能有效定量测量肾脏硬度,具有无创和重复性好等优势。基于STE技术测得的肾脏Emean可在一定程度上为CKD的分期和分型评估提供指导。
 
  参考文献
 
  [1] GLASSOCK R J, WARNOCK D G, DELANAYE P. The global burden of chronic kidney disease: estimates, variability and pitfalls[J]. Nat Rev Nephrol, 2017, 13(2): 104-114.
 
  [2] SANCHEZ-NIÑO M D, SANZ A B, RAMOS A M, et al. Translational science in chronic kidney disease[J]. Clin Sci (Lond), 2017, 131(14): 1617-1629.
 
  [3] HARDING K, MERSHA T B, WEBB F A, et al. Current state and future trends to optimize the care of African Americans with end-stage renal disease[J]. Am J Nephrol, 2017, 46(2): 156-164.
 
  [4] JHA V, GARCIA-GARCIA G, ISEKI K, et al. Chronic kidney disease: global dimension and perspectives[J]. Lancet, 2013, 382(9888): 260-272.
 
  [5] CHEVALIER R L. Evolution, kidney development, and chronic kidney disease[J]. Semin Cell Dev Biol, 2019, 91: 119-131.
 
  [6] DONG F J, WU H Y, ZHANG L, et al. Diagnostic performance of multimodal sound touch elastography for differentiating benign and malignant breast masses[J]. J Ultrasound Med, 2019, 38(8): 2181-2190.
 
  [7] YANG L L, LI J W, MA L, et al. Noninvasive assessment of liver fibrosis in chronic hepatitis B carriers with sound touch elastography: study of surgical pathology specimens[J]. Expert Rev Med Devices, 2020, 17(8): 845-853.
 
  [8] YANG L L, LING W W, HE D, et al. Shear wave-based sound touch elastography in liver fibrosis assessment for patients with autoimmune liver diseases[J]. Quant Imaging Med Surg, 2021, 11(4): 1532-1542.
 
  [9] ZHANG L, DING Z M, DONG F J, et al. Diagnostic performance of multiple sound touch elastography for differentiating benign and malignant thyroid nodules[J]. Front Pharmacol, 2018, 9: 1359.
 
  [10] WANG J F, WU M L, LINGHU R Z, et al. Usefulness of new shear wave elastography technique for noninvasive assessment of liver fibrosis in patients with chronic hepatitis B: a prospective multicenter study[J]. Ultraschall Med, 2022, 43(2): e1-e10.
 
  [11] HU L, LIU X, PEI C, et al. Assessment of perinodular stiffness in differentiating malignant from benign thyroid nodules[J]. Endocr Connect, 2021, 10(5): 492-501.
 
  [12] OPHIR J, ALAM S K, GARRA B S, et al. Elastography: imaging the elastic properties of soft tissues with ultrasound[J]. J Med Ultrason (2001), 2002, 29(4): 155.
 
  [13] GUAN Y, LIU S, LI A C, et al. A pilot study: N-staging assessment of shear wave elastrography in small cervical lymph nodes for nasopharyngeal carcinoma[J]. Front Oncol, 2020, 10: 520.
 
  [14] SWAN K Z, NIELSEN V E, BONNEMA S J. Evaluation of thyroid nodules by shear wave elastography: a review of current knowledge[J]. J Endocrinol Invest, 2021, 44(10): 2043-2056.
 
  [15] GATOS I, DRAZINOS P, YARMENITIS S, et al. Comparison of sound touch elastography, shear wave elastography and vibration-controlled transient elastography in chronic liver disease assessment using liver biopsy as the “reference standard”[J]. Ultrasound Med Biol, 2020, 46(4): 959-971.
 
  [16] SINHA N K, KOHLI P S, NAGARAJAN K, et al. A nomogram for predicting the risk of neck node metastasis in oral cavity carcinoma using acoustic radiation force impulse imaging (ARFI)[J]. Oral Oncol, 2021, 118: 105311.
 
  [17] WU J F, GE L J, YE X B, et al. Can acoustic radiation force impulse imaging (ARFI) accurately diagnose renal masses? A protocol of systematic review and meta-analysis[J]. Medicine (Baltimore), 2020, 99(31): e21500.
 
  [18] JIANG K, FERGUSON C M, LERMAN L O. Noninvasive assessment of renal fibrosis by magnetic resonance imaging and ultrasound techniques[J]. Transl Res, 2019, 209: 105-120.
 
  [19] LIM W T H, OOI E H, FOO J J, et al. Shear wave elastography: a review on the confounding factors and their potential mitigation in detecting chronic kidney disease[J]. Ultrasound Med Biol, 2021, 47(8): 2033-2047.
 
  [20] LIU Q, WANG Z R. Diagnostic value of real-time shear wave elastography in children with chronic kidney disease[J]. Clin Hemorheol Microcirc, 2021, 77(3): 287-293.
 
  [21] LEONG S S, WONG J H D, MD SHAH M N, et al. Shear wave elastography in the evaluation of renal parenchymal stiffness in patients with chronic kidney disease[J]. Br J Radiol, 2018, 91(1089): 20180235.
 
  [22] LEONG S S, WONG J H D, MD SHAH M N, et al. Shear wave elastography accurately detects chronic changes in renal histopathology[J]. Nephrology (Carlton), 2021, 26(1): 38-45.
 
  [23] BOB F, GROSU I, SPOREA I, et al. Ultrasound-based shear wave elastography in the assessment of patients with diabetic kidney disease[J]. Ultrasound Med Biol, 2017, 43(10): 2159-2166.
 
  [24] BOB F, GROSU I, SPOREA I, et al. Is there a correlation between kidney shear wave velocity measured with VTQ and histological parameters in patients with chronic glomerulonephritis? A pilot study[J]. Med Ultrason, 2018, 1(1): 27-31.
 
  [25] GROSU I, BOB F, SPOREA I, et al. Correlation of point shear wave velocity and kidney function in chronic kidney disease[J]. J Ultrasound Med, 2018, 37(11): 2613-2620.
 
  [26] GROSU I, BOB F, SPOREA I, et al. Two-dimensional shear-wave elastography for kidney stiffness assessment[J]. Ultrasound Q, 2019, 37(2): 144-148.
 
  [27] ASANO K, OGATA A, TANAKA K, et al. Acoustic radiation force impulse elastography of the kidneys: is shear wave velocity affected by tissue fibrosis or renal blood flow?[J]. J Ultrasound Med, 2014, 33(5): 793-801.
 
  [28] SELVASKANDAN H, SHI S F, TWAIJ S, et al. Monitoring immune responses in IgA nephropathy: biomarkers to guide management[J]. Front Immunol, 2020, 11: 572754.
 
  [29] PATTRAPORNPISUT P, AVILA-CASADO C, REICH H N. IgA nephropathy: core curriculum 2021[J]. Am J Kidney Dis, 2021, 78(3): 429-441.
 
  [30] APPEL G B, WALDMAN M. The IgA nephropathy treatment dilemma[J]. Kidney Int, 2006, 69(11): 1939-1944.
 
  [31] 王亮, 吕珂, 陈丽萌, 等. 声触诊组织定量技术在IgA肾病的应用[J]. 协和医学杂志, 2014, 5(1): 50-53.
 
  [32] 姚俊东,刘彬彬,张周龙,等.声辐射力脉冲弹性成像及超微血流成像技术评估IgA肾病严重程度[J].中国介入影像与治疗学, 2021, 18(11): 668-671.
热门排行

在线客服:

无忧期刊网 版权所有   

【免责声明】:所提供的信息资源如有侵权、违规,请及时告知。

专业发表机构