优胜从选择开始,我们是您省心的选择!—— 无忧期刊网
帮助中心
期刊发表

旱区不同季节农田表层土壤水盐协同变化差异特征及其动力机制

作者:无忧期刊网 来源:期刊论文 日期:2023-05-06 08:33人气:
  摘    要:【研究目的】围绕西北内陆流域地下水浅埋区不同季节表层土壤水盐协同变化差异特征及其动力机制。【研究方法】基于野外地下水调控试验场内原位多要素高频率监测系统获取的数据,综合对比分析了无降水和灌溉入渗直接影响时段表层土壤含水率、土壤孔隙水电导率、地下水位埋深等要素的变化特征。【研究结果】年内由春末、夏季到秋初,20cm(浅部)和40cm(深部)深度土壤含水率均越来越小,浅部和深部土壤孔隙水电导率(ECp)均越来越大,浅部土壤饱和溶液电导率(ECe)越来越小,深部土壤ECe则越来越大。春末浅部土壤含水率、ECp和ECe日际变化相同,深部土壤含水率、ECp和ECe变化趋势各异。夏季浅部土壤含水率和ECe日际变化趋势相同,与土壤ECp变化不同;深部土壤ECp和ECe变化趋势相同,与土壤含水率变化不同。秋初浅部和深部的土壤含水率、ECp和ECe日际变化趋势均各不相同。【研究结论】灌溉是影响表层土壤水盐季节间差别的主导因素;蒸散发是引发表层土壤水盐季节内变化的直接因素,且气温越高,其影响效应越明显;地下水位埋深是影响表层土壤水盐的重要和可调控因素,夏季增大地下水位埋深,表层土壤含盐量明显降低,研究区夏季农田盐渍化防控的临界地下水位埋深位于1.6 m和1.9 m间。
  
  关键词:旱区; 不同季节;表层土壤水盐;协同变化;灌溉;蒸散发;地质调查工程;西北地区;中国;
  
  Differentiation characteristics and dynamic mechanism of synergistic changes of surface
  
  soil water and its salt in different seasons in arid area
  
  LIU Pengfei ZHANG Guanghui CUI Shangjin NIE Zhenlong CAOLe CUI Haohao WANG
  
  Qian
  
  Institute of Hydrogeology and Environmental Geology CAGS Chinese Academy of Geological
  
  Sciences( Beiing) Key Laboratory of Groundwater Sciences and Engineering,Ministry of Natural
  
  Resources
  
  Abstract:【Objective】The object of the study is focusing on the characteristics and dynamic mechanism of the same variation of surface soil water and its salt in different seasons in groundwater level depth area of the northwest inland basin.【Methods】Based on data obtained from the in situ multi-factor high frequency monitoring system in groundwater regulation field site, changing processes of topsoil moisture content, pore water electronic conductivity (ECp), groundwater level depth and so on without the direct influence of precipitation and irrigation infiltration were comprehensively analyzed and studied.【Results】20 cm (shallow part)and 40 cm (deep part) depth soil moisture content in later spring,summer and early autumn were all arranged in descending order. However, the shallow and deep part soil ECp were all arranged in increasing order. The shallow part soil electronic conductivity of saturated leach solution (ECe) was arranged in descending order and the deep part soil ECe was arranged in increasing order. In later spring day variation trends of soil moisture content, ECp and ECe were the same in shallow part, which were different in the deep part soil. In summer day variation trends of shallow part soil moisture content and ECe were the same and that of soil ECp was different from them. However, day variation trends of deep part soil ECp and ECe were the same and that of soil moisture content was different from them. In early autumn day variation trends of soil moisture content, ECp and ECe were all different in shallow and deep part. 【Conclusions】Irrigation is the leading factor of influencing differences of surface soil moisture content and salt among seasons. Evapotranspiration is the major factor of resulting in changes of surface soil moisture content and salt in each season. Moreover, the higher the temperature, the more obvious the effect of the evapotranspiration. Groundwater level depth is an important and regulatory factor of affecting topsoil moisture content and salt. In summer when the groundwater level depth becomes bigger, topsoil salt content obviously decreases. In the study area the critical groundwater level depth of prevention and control of farmland salinization is between 1.6 m and 1.9 m in summer.
  
  Keyword:Arid areas; Different seasons; Water and salt of topsoil; Synergy changes; Irrigation; Evapotranspiration; Hydrogeological survey engineering; Northwest area; China;
  
  1 引言
  
  在西北内陆流域中下游区,降水稀少、蒸发强烈,地下水浅埋区农田表层土壤易发生盐渍化(王金哲等, 2020; 方丽章等, 2019; Liu et al., 2019)。随着西北内陆流域平原区地下水超采治理和自然湿地生态修复工作逐步推进,浅层地下水位不断上升,湿地周边农田土壤盐渍化加剧问题更加突出(缑倩倩等, 2015; 周远刚等, 2019; Zhang et al., 2018; 王宇等, 2016),西北地区耕地压力形势更加严峻(夏积德等, 2016)。由此,下游盐渍化农田区年内不同季节、不同灌溉和潜水水位变化下,表层土壤(40cm深度以浅,下同)水盐协同变化差异特征及形成机制仍是值得深入研究课题之一,对于高效低成本确保农田土壤含盐量处于农作物生长耐盐阈值(极小耐盐量,记作C盐阈)以下具有重要意义。
  
  有关农田区土壤水盐运移与调控研究成果较多,相关研究得出农田表层土壤积盐速率主要受地下水位埋深、灌溉、蒸发等因素影响(王金哲等, 2020; Ge et al., 2021; Liu et al., 2021; 李勋章, 2016; 徐英等, 2019),当前关于土壤水盐运移与分布规律的研究多以季节或作物生长阶段为时间尺度开展(Yin et al., 2021; Cui et al., 2022; Yi etal., 2014; Sun et al., 2022),许多学者针对各地区特点提出了农田盐渍化防控的地下水动态临界埋深(翟家齐等, 2021; Sun et al., 2018),大量研究得出地下水位埋深与表层土壤盐分含量呈负相关关系(Li et al., 2020; Yuan, 2020; Zhang et al, 2019)。但日际和昼夜尺度下旱区不同季节表层土壤水盐协同变化差异特征与机制的研究仍薄弱,限制了小尺度下地下水动态临界埋深的深入研究,特别是夏季高温条件下受地下水位、蒸发、灌溉等因素影响表层土壤水盐变化复杂,急需进一步深入研究。本研究依托国家重点科技课题(2017YFC0406103,2017—2021年)在甘肃石羊河流域天然绿洲与农田过渡带建立的土壤水盐协同机制及优化调控试验基地,基于高频率(次/30 min)多要素(含水率、电导率、水势、地下水位埋深、气温、湿度等)原位监测系统,开展不同季节表层土壤水盐日际和昼夜变化特征及动力机制研究,对旱区下游盐渍化农田区地下水位精准调控具有重要的指导意义。
  
  2 研究区概况与数据来源
  
  2.1 研究区概况
  
  本研究的背景区是石羊河流域下游民勤盆地,年降水量不足150 mm,潜水位埋深小于1.5 m。包气带岩性为冲湖积沉积物,以砂质壤土及壤质砂土为主,支持毛细水上升高度1.7 m左右,利于潜水向表层土壤输送水盐。该区天然植被主要为盐爪爪、芦草、红柳和柽柳等,农作物以耐旱耐盐的葵花、玉米和瓜类等为主,本次研究中以葵花为例,其耐盐上限为12.01 mS/cm(土壤饱和浸取液电导率)(孔东等, 2004)。
  
  试验研究基地位于石羊河流域腾格里沙漠边缘的邓马营湖南井村一带,地理坐标N38°06′2.4″、E103°20′1.0″,地处荒漠天然绿洲与农田过渡带,20世纪70年代之前为盐沼湿地。年均降水量123.6 mm,年均蒸发量2063.5 mm,7月气温为年内最高,1月气温最低(刘鹏飞等, 2022)。试验基地潜水位埋深介于1.0~1.6 m(图1),地势平坦,灌溉期地下水由农田流向自然植被区,潜水矿化度7.63~13.24 g/L,深层承压水矿化度<1.0 g/L。
  
  2.2 数据来源
  
  试验研究基地于2019年初建成,至2021年10月一直持续运行,基地布设如图2及表1所示,包含基于虹吸辐射井群的“水位-水量”智能调控系统、立体式多要素监测系统和地下水分质灌溉利用系统,设置有水位调控淡水灌区、水位调控微咸水灌区等6个区,本次研究中重点关注水位调控淡水灌区和非水位调控淡水灌区,其中智能调控系统能够实现调控区分级水位的控制,监测系统能够实现对大气、包气带、地下水的多要素高频率的监测。
  
  本研究中气温、灌溉量、地下水位、土壤体积含水率、土体电导率数据均由试验基地监测系统提供(表1)。为提高监测数据的准确性,采用原状土烘干实测含水率与设备监测的介电常数建立线性回归方程的方法对包气带三参数自动监测仪(5TE)监测的含水率进行了校正。土壤含盐量(本文指水溶性盐)是反映土壤盐渍化程度的重要指标,可用于判断一段时间内土壤盐分变化状况(Liu et al., 2022),本研究中在夏季调控期前后分别采取不同深度土样进行水溶性盐测试。土壤中对作物产生直接危害的盐分是溶解到土壤溶液中的盐分,以土壤孔隙水盐分浓度大小作为判断作物是否受到盐分胁迫更加科学(Shin et al., 2022; Lim et al., 2017),孔隙水电导率与孔隙水盐分浓度呈显著正相关(张一清等, 2022),土壤饱和溶液电导率(ECe)是土壤溶液中盐分在土壤饱水状态下的电导率,用于判断土壤溶液中总盐分的变化,本研究中土壤盐分日际变化指标选择为土壤孔隙水电导率和饱和溶液电导率。研究区农田表层土壤容重为1.4 g/cm3,密度为2.65 g/cm3,5TE监测数据采用Hilhorst模型(Hilhorst, 2000)校正得到得土壤ECp和ECe。
  试验基地潜水位埋深等值线及观测井位置
  图1 试验基地潜水位埋深等值线及观测井位置   
  
  Fig.1 Contour lines of groundwater level depth and monitoring wells location in test site
  试验基地分区设置与监测点分布
  图2 试验基地分区设置与监测点分布   
  
  Fig.2 Subarea and monitoring points distribution in test site
  
  表1 试验基地主要监测指标和技术要求 
  
  Table 1 Main monitoring indicators and technical requirements in test site
  试验基地主要监测指标和技术要求
  3 作物生长期不同季节表层土壤水盐协同变化特征
  
  西北旱区春末至秋初(5—9月)是作物的生长期,综合考虑气温和作物生长特征(图3),本次研究时段选择为春末(5月初)、夏末(8月初)和秋初(9月初)。灌溉和降水初期表层土壤水盐运移以水源入渗淋盐为主,作物面临盐分胁迫风险的时段主要在后期土壤溶液蒸发浓缩阶段(灌后5 d左右)。研究区2020年灌溉和降水主要集中在夏季,春季有一次大水量灌溉和8 mm降水,秋季无灌溉,仅有一次18 mm降水,本研究中主要分析无灌溉和降水直接影响(灌后5 d,无明显降水)时段表层土壤水盐变化。本研究关注的淡水灌区内灌溉水溶解性总固体为0.6 g/L,2020年葵花灌溉6次(图3),单次水量900~1 200 m3/hm2,年总灌溉水量5400~7200 m3/ hm2。
  试验基地2020年作物生长期主要气象要素变化
  图3 试验基地2020年作物生长期主要气象要素变化   
  
  Fig.3 Main meteorological elements changes in crop growth period of 2020 in test site
  
  3.1春末作物幼苗期表层土壤水盐协同变化特征
  
  每年春末(4月末至5月初)作物播种后开展年内首次灌溉。灌后5~20 d ,20、40 cm 深度土壤含水率介于26.69%~31.04%,20 cm深度含水率明显小于40 cm深度;两个深度含水率日际变化均呈减少趋势,变幅小,昼夜含水率无明显变化(图4a、4b)。从图4c看出对应时段表层土壤ECp为6.6~7.1 mS/cm,前期20 cm深度土壤ECp大于40 cm深度,后期小于40 cm深度;20 cm深度土壤ECp日际变化呈减小趋势,日均降幅0.033 mS/cm,40 cm深度ECp日际变化呈增大趋势,日均增幅0.033 mS/cm;20 cm和40 cm深度土壤ECp昼夜变幅均较小,整体表现出白天增大夜间减小的趋势,20 cm深度更为明显(图4d)。表层土壤ECe为4.0~4.5 mS/cm,40 cm深度土壤ECe大于20 cm深度;20 cm深度土壤ECe日际变化呈小幅降低趋势,40 cm深度土壤ECe较稳定(图4e),20 cm深度土壤ECe昼夜变化呈现白天略大于夜间,40 cm深度较为稳定(图4f)。综上分析可看出,20 cm深度土壤含水率、ECp和ECe日际变化特征相同,均呈减小趋势;40 cm深度土壤含水率、ECp和ECe日际变化特征具有差异性,分别呈减小、增大和稳定趋势。
  
  3.2 夏季作物关键生长期表层土壤水盐协同变化特征
  
  盛夏7月至8月中旬,是作物主要生长期,气温介于10~35℃,平均25℃左右,灌溉频率高。从图5a可看出灌后5~12 d,20、40 cm深度土壤含水率介于17.40%~27.56%,该时段前期40 cm深度含水率大于20 cm深度,后期与20 cm深度含水率相当;两深度含水率日际变化均呈显著减少趋势,昼夜变化白天(9:00-17:00)降幅大于夜间(图5b)。从图5c可看出该时段土壤ECp为7.04~12.24 mS/cm,40 cm深度土壤ECp大于20 cm深度;20、40 cm深度土壤ECp日际变化均呈增大趋势,日均增幅分别为0.17、0.52 mS/cm,昼夜变化白天(9:00-17:00)呈增大趋势,夜间呈稳定或缓慢降低趋势(图5d)。从图5e可看出该时段表层土壤ECe为3.52~4.68 mS/cm,40 cm深度土壤ECe大于20 cm深度;20 cm深度土壤ECe日际变化呈小幅降低趋势,40 cm深度土壤ECe呈缓慢增大趋势,昼夜变化呈白天增大夜间降低(图5f)。综上分析可看出,20 cm深度土壤含水率和ECe日际变化特征相同,均呈减小趋势,土壤ECp则呈增大趋势;40 cm深度土壤含水率呈减小趋势,土壤ECp和ECe日际变化特征相同,均呈增大趋势。
  
  图4春末时段表层土壤含水率、ECp和ECe日际与昼夜变化(A监测点)   
  
  Fig.4 Daily and circadian changes of moisture content, Ecp and ECe of topsoil in the period of later spring
  
  图5 夏季时段表层土壤含水率、ECp和ECe日际与昼夜变化(A监测点)   
  
  Fig.5 Daily and circadian changes of moisture content, ECp and ECe of topsoil in the period of summer
  
  3.3秋初作物成熟枯萎期表层土壤水盐协同变化特征
  
  进入9月份,气温明显下降,气温为5~28℃,平均14℃左右,农田灌溉基本结束,农作物生长进入成熟-枯萎期。从图6a可看出该时段表层土壤含水率介于13.95%~16.04%,20 cm深度土壤含水率大于40 cm 深度;该阶段含水率日际变化呈小幅增长趋势,昼夜变化白天含水率小于夜间(图6b)。从图6c可看出该阶段表层土壤ECp为8.67~16.94 mS/cm,40 cm深度土壤ECp大于20 cm深度;20、40cm深度土壤ECp日际变化呈小幅降低趋势,昼夜变化呈夜间降低白天增大趋势,变幅较小(图6d)。从图6e可看出该时段表层土壤ECe为2.93~4.86 mS/cm,40 cm深度土壤ECe大于20 cm深度;表层土壤ECe日际与昼夜变化均较稳定(图6f)。综上分析可看出,20 cm和40 cm深度的土壤含水率、ECp和ECe日际变化特征具有差异性,均分别呈增大、减小和稳定趋势。
  
  图6 秋初时段表层土壤含水率、ECp和ECe日际与昼夜变化(A监测点)   
  
  Fig.6 Daily and circadian changes of moisture content, ECp and ECe of topsoil in the period of early autumn
  
  3.4 不同季节时段表层土壤水盐协同变化特征差异性分析
  
  对比分析春末、夏季和秋初三个季节时段表层土壤水盐变化特征可看出,春末、夏季、秋初三个季节时段表层土壤含水率越来越小;春末表层土壤含水率日际变化呈小幅降低趋势,夏季呈大幅降低趋势,秋初呈小幅增长趋势,昼夜变化三个季节时段内均呈白天小于夜间的特点,夏季日际和昼夜变幅最大,春末次之,秋初最小;春末40 cm深度含水率大于20 cm,夏季则呈现40 cm深度含水率前期大于后期小于20 cm深度的特点,秋初20 cm深度含水率大于40 cm深度。
  
  春末、夏季、秋初三个季节时段表层土壤ECp越来越大;春末表层土壤ECp日际变化呈现40 cm深度土壤ECp缓慢增大,20 cm深度缓慢减小的趋势,夏季两个深度土壤ECp均呈现大幅增大趋势,其中40 cm深度增幅大于20 cm深度,秋初两个深度土壤ECp均呈小幅降低;夏季和秋初时段内土壤ECp昼夜变化呈现夜间降低白天增大特点,夏季变幅大于秋初,春末昼夜变幅小;春末40 cm深度土壤ECp呈现前期小于后期大于20 cm深度的动态过程,且差值较小,夏季40 cm深度土壤ECp大于20 cm深度,且差值逐步增大,秋季40 cm深度土壤ECp大于20 cm深度,且较稳定。
  
  春末、夏季、秋初三个季节时段,40 cm深度土壤ECe越来越大,20 cm深度土壤ECe越来越小;夏季40 cm深度土壤ECe日际变化增幅较大,春末和秋初较为稳定,春末和夏季时段20 cm深度土壤ECe呈小幅降低趋势,秋初较稳定;夏季时段表层土壤ECe昼夜变幅较大,春末和秋初时段较稳定。
  
  综上分析可看出,20 cm深度土壤含水率、ECp和ECe在三个季节时段的日际协同变化特征为:春末三者变化趋势均相同,夏季土壤含水率和ECe变化趋势相同,秋初三者变化趋势均不相同。40 cm深度土壤含水率、ECp和ECe在三个季节时段的日际协同变化特征为:春末三者变化趋势均不相同,夏季土壤ECp和ECe变化趋势相同,秋初三者变化趋势均不相同。
  
  4不同季节表层土壤水盐协同变化动力学机制
  
  春季末期(4月末至5月)是西北旱区农作物处于幼苗期,气温为5~26℃,日均15℃左右,表层土壤蒸散发量小,同期地下水位埋深为1.9 m左右(图7),地下水难以通过支持毛细水向表层土壤输送水盐,受春季播种后首次大水量灌溉(约1200 m3/hm2)和较弱蒸散发能力的叠加影响(图3),表层土壤含水率能够在一段时间内维持在较大值,且日际和昼夜变化幅度较小;该阶段作物处于幼苗期,蒸散发以土面蒸发为主,浅层蒸发量大,由此20 cm深度含水率小于40 cm深度。西北旱区有少量凝结水产生(冯天骄等, 2021; 庄艳丽等, 2008),20 cm深度土壤盐分在凝结水溶滤与入渗作用下20 cm深度土壤ECp和ECe均呈小幅降低趋势,但水量较小影响深度较浅,40 cm深度土壤水受蒸发影响,土壤ECp呈小幅增大,土壤ECe呈稳定状态。
  
  进入夏季,气温较高,作物处于关键生长期,植株较高,叶片数量较多,表层土壤蒸散发量大,同时在地下水调控作用下,地下水埋深较大(图8),水势是包气带水分运移的能量基础,从调控区灌后10天时包气带剖面总水势分布可看出(图9),深度40-60 cm间总水势基本相等,地下水通过支持毛细水向表层土壤输送水盐量很少,从灌后2 d和10 d调控区不同深度土壤含水率变化可看出深度40 cm以浅含水率降幅达8.17%左右,60 cm深度含水率降幅减少到5.98%,表层土壤含水率的大幅降低说明支持毛细水顶端位于40 cm深度以下,在缺少水分输入但存在水分输出的情况下,土壤孔隙水发生浓缩,20、40 cm深度土壤ECp日际均呈增大趋势;同时该季节表层土壤含水率保持在较高值,表层土壤不会发生明显积盐,在无明显盐分输入和输出的情况下,20、40 cm深度土壤ECe均变化较小。夏季灌溉频率高,在灌溉水溶滤与入渗作用下表层盐分下移,另一方面夏季作物植株较高,作物蒸腾量占蒸散发量70%以上,作物(葵花)30~40 cm深度根系吸水速率大于10~20 cm深度,由此40 cm深度含水率降幅及土壤ECp和ECe值均大于20 cm深度;20 cm深度ECe呈小幅降低,是强灌期灌溉水淋盐和凝结水溶滤入渗的影响结果(冯天骄等, 2021; 庄艳丽等, 2008)。由于白天气温和表层土壤蒸散发量大于夜间,由此白天含水率降幅大于夜间,ECp和ECe也呈白天增长夜间降低趋势。
  
  对比夏季同时段非调控区,地下水埋深一直维持在1.6 m左右(图8),灌后5~12 d,20、40cm深度土壤ECp和ECe增幅(相对灌后5 d时刻值)均不断增大(图10、11),即土壤水溶液盐分浓度增大,表层土壤溶液总含盐量也增大,说明支持毛细水已到达表层土壤,随着表层土壤水的蒸散发,地下水持续向表层土壤输送水盐。对比该区内灌后2 d和10 d不同深度含水率变化可看出(表2),20 cm深度含水率降幅达6.60%,40~60 cm深度降幅减小为3.35%,进一步说明支持毛细水顶端已到达40 cm深度以浅,从灌后10 d土壤剖面水势分布看出,存在地下水向表层土壤输送水盐的通道,从夏季高温时段前后(7月1日和9月1日)调控区和非调控区不同深度土壤水溶性盐含量变化可看出(图12),调控区40 cm深度以浅土壤含盐量减少了0~10 g/kg,40 cm深度以下土壤含盐量增加了0~8 g/kg;非调控区0~15 cm深度土壤含盐量减少了0~5 g/kg,深度15~40 cm土壤含盐量增加了0~6 g/kg。综上可说明地下水位埋深是防控表层土壤积盐的重要和可调控因素,地下水位埋深从1.6 m增大到1.9 m,支持毛细水顶端埋深增大,地下水向表层土壤输送水盐量显著减小,在夏季高温季节可明显降低40 cm以浅土壤含盐量。
  
  进入秋季,灌溉结束,表层土壤含水率相对于春末和夏季最小,气温降低叠加成熟-枯萎期作物蒸腾量变小,表层土壤蒸散发量很小,且调控停止后地下水埋深稳定在1.6 m左右(图13),地下水通过支持毛细水可向表层土壤稳定输送水盐,由此表层土壤含水率、ECp和ECe均呈较稳定状态,由于有少量凝结水产生(冯天骄等, 2021; 庄艳丽等, 2008),表层土壤(特别是20 cm深度)含水率呈小幅增长,ECp小幅降低。该季节40 cm深度土壤ECp和ECe大于春末和夏季,一方面是由于灌期淋洗表层盐分下渗的结果,另一方面是根系吸收深层水蒸散发的结果。
  
  图7 春末地下水埋深日际变化(G6)   
  
  Fig.7 Groundwater depth daily changes in spring
  
  表2灌后2天和10天不同深度土壤含水率及变化量 单位:% 
  
  Table 2 Soil moisture content and variable quantity in different depths after 2 and 10 days after irrigation Unit:%
  
  图8 夏季地下水埋深日际变化(G06、G20)   
  
  Fig.8 Groundwater depth daily changes in summer under regulation
  
  图9 包气带剖面总水势分布图   
  
  Fig.9 Total water potential distribution in vadose zone profile
  
  图10非调控区表层土壤ECp变幅(D监测点)   
  
  Fig.10 Topsoil ECp rangeability in un-regulable zone
  
  图11非调控区表层土壤ECe变幅(D监测点)   
  
  Fig.11 Topsoil ECp rangeability in un-regulable zone
  
  图12不同深度土壤盐分变化量   
  
  Fig.12 Soil salt changing content in different depths
  
  图13秋初地下水位埋深日际变化(G06)   
  
  Fig.13 Groundwater depth daily changes in early autumn
  
  从上述不同季节表层土壤水盐变化的影响因素分析中可看出,灌溉能够维持表层土壤含水率和淋洗表层盐分,是影响表层土壤水盐季节间差异的主导因素,秋初时段灌溉停止后表层土壤含水量相对于春末和夏季减幅达12%~16%,表层土壤溶液电导率相对于春末和夏季增幅达7~8.5 mS/cm。蒸散发作用下表层土壤水以气态形式散发到大气中,土壤含水率降低,土壤发生积盐,是影响表层土壤水盐季节内变化的直接因素,在旱区大气中含水率低,蒸散发能力与气温呈正相关关系,从不同季节温度变化与表层土壤ECp的关系可看出(图14),气温与表层土壤ECp呈正相关关系,气温升高1℃,春末、夏季和秋初表层土壤ECp增幅分别为0.0011、0.0197 mS/cm和0.0129 mS/cm,夏季气温最高,表层土壤ECp增幅最大,在春秋季蒸散发能力相差不大的情况下,秋季表层土壤ECp大于春季,是由于春季播种后的大水量灌溉对土壤进行了充分淋盐,而秋初作物成熟期无灌溉进行,作物蒸发浓缩速率相对较快。夏季蒸散发能力较强条件下土壤含水率降幅明显大于春末和秋初,而春末土壤含水率变化相对于秋初更加稳定是由于春季首次大水量灌溉后在蒸散发能力较弱条件下土壤含水率持续处于较大值的结果。地下水位埋深是表层土壤积盐的重要和可调控因素,研究区地下水位埋深从1.6 m增大到1.9 m,支持毛细水埋深增大,从而显著减小地下水向表层土壤的水盐输送量,在夏季高温季节可有效降低40 cm深度以浅土壤含盐量。凝结水对浅表(20 cm深度以内)土壤盐分具有一定的溶滤效应,夏秋季节凝结水量大,溶滤效应更明显,且能在一定程度上增大浅表土壤含水率。综上分析可看出,春季表层土壤水盐变化主要受灌溉作用影响,夏季表层土壤水盐变化同时受灌溉和蒸散发作用影响,该季节地下水位调控作用能在一定程度上缓解表层土壤积盐,秋季表层土壤水盐变化主要受蒸散发影响,另外旱区凝结水的在夏秋季节的影响作用不可忽视,但其作用深度较浅(20 cm深度以内),影响程度较小。
  
  图14 不同季节气温与表层土壤ECp关系   
  
  Fig.14 Relationship between topsoil ECp and temperature in different seasons
  
  5 结论
  
  (1)在无灌溉和降水入渗直接影响的时段内,年内由春末、夏季到秋初,20cm(浅部)和40cm(深部)深度土壤含水率均越来越小,浅部和深部土壤ECp均越来越大,深部土壤ECe越来越大,浅部土壤ECe则越来越小。
  
  (2)春末浅部土壤含水率、ECp和ECe日际变化均呈减小趋势,深部土壤含水率、ECp和ECe分别呈减小、增大和稳定趋势。夏季浅部土壤含水率和ECe日际变化呈减小趋势,土壤ECp呈增大趋势;深部土壤含水率呈减小趋势,土壤ECp和ECe均呈增大趋势。秋初浅部和深部的土壤含水率、ECp和ECe日际变化均分别呈增大、减小和稳定趋势。
  
  (3)灌溉是影响表层土壤水分和盐分季节间差别的主导因素,其作用下可增加表层土壤含水率和淋洗表层土壤盐分;蒸散发是引发表层土壤水分和盐分季节内差别的直接因素,其作用下土壤含水率降低,土壤ECp增大,且温度越高,其作用影响效应越明显。
  
  (4)地下位埋深大小是影响表层土壤水盐变化的重要和可调控因素,增大地下水位埋深可增大支持毛细水顶端埋深,降低地下水向表层土壤的水盐输送量。夏季研究区将地下水位埋深从1.6 m增大至1.9 m,表层土壤含盐量明显降低,土壤溶液浓度可控制在作物耐盐阈值内,该区夏季农田盐渍化防控临界地下水位埋深位于1.6 m和1.9 m间。
  
  创新点:阐明了春末、夏季和秋初三个季节时段表层土壤水盐协同变化差异性特征;揭示了三个季节时段内表层土壤协同变化的动力机制。
  
  Highlights:Differentiation characteristics of synergistic changes of surface soil water and its salt in later spring, summer and early autumn in arid area were clarified. Dynamic mechanism of synergistic changes of surface soil water and its salt in three seasons was revealed.
  
  参考文献
  
  [1] Cui Haohao, Zhang Guanghui, Wang Jinzhe, Wang Qian, Lang Xujuan. 2022. Influence of multi-layered structure of vadose zone on ecological effect of groundwater in Arid Area: a case study of Shiyang River Basin, Northwest China[J]. Water, 14, 59.
  
  [2] Fang Lizhang, Li Yanhong, Li Fadong, Zhu Haiqiang. 2019. Analysis of spatial variation of soil moisture–salinity–nutrient in Ebinur Lake wetlands[J]. Journal of Agro-Environment Science, 38(1):157-167(in Chinese with English abstract).
  
  [3] Feng Tianjiao, Zhang Zhiqi, Zhang Lixu, Xu Wei, He Jinsheng. 2021. Review on the influencing factors and functions of condensated water in arid and semi-arid ecosystems[J]. Acta Ecologica Sinica, 41(2): 456-468(in Chinese with English abstract).
  
  [4] Gou Qianqian, Qu Jianjun, Wang Guohua, Xiao Jianhua, Pang Yingjun. 2015. Progress of wetland researches in Arid and Semi-arid Regions in China[J]. Arid Zone Research, 32(2): 213-220(in Chinese with English abstract).
  
  [5] Hilhorst M A. 2000. A pore water conductivity sensor[J]. Soil Science Society of America Journal, 64(6): 1922-1925.
  
  [6] Kong Dong, Shi Haibin, Huo Zailing, Yan Yun, Li Yanlin, Zhang Yiqiang. 2004. Effects on growth of sunflower under different saline soils in the Hetao Irrigation Area[J]. Journal of Shenyang Agricultural University, (Z1): 414-416(in Chinese with English abstract).
  
  [7] Lim SJ, Shin MN, Son JK, Song JD, Cho KH, Lee SH, Ryu JH, Cho JY. 2017. Evaluation of soil pore-water salinity using a Decagon GS3 sensor in saline-alkali reclaimed tidal lands[J]. Computers and Electronics in Agriculture, 132: 49-55.
  
  [8] Li Xuemin, Zhang Chenglong, Huo Zailin. 2020. Optimizing irrigation and drainage by considering agricultural hydrological process in arid farmland with shallow groundwater[J]. Journal of Hydrology, 585(2): 124785.
  
  [9] Liu Bing, Zhao Wenzhi, Wen Zijuan, Yang Yuting, Chang Xuexiang, Yang Qiyue, Meng Yangyang, LiuChan. 2019. Mechanisms and feedbacks for evapotranspiration-induced salt accumulation and precipitation in an arid wetland of China[J]. Journal of Hydrology, 568: 403-415.
  
  [10] Liu Geng, Wang Chaozi, Wang Xianghao, Huo Zailin, Liu Jiarong. 2022. Growing season water and salt migration between abandoned lands and adjacent croplands in arid and semi-arid irrigation areas in shallow water table environments[J]. Agricultural Water Management, 274: 107968.
  
  [11] Liu Min, Nie Zhenlong, Cao Le, Wang Lifang, Lu Huixiong, Zhu Pucheng. 2021. Comprehensive evaluation on the ecological function of groundwater in the Shiyang River watershed[J]. Journal of Groundwater Science and Engineering, 9(4): 326-340.
  
  [12] Li Xunzhang. 2016. Study on groundwater regulation of the Bohu County based on ecological security in arid area[D]. Xin Jiang Agricultural University(in Chinese with English abstract).
  
  [13] Liu Pengfei, Zhang Guanghui, Cui Shangjin, Liu Shaoyu, Nie Zhenlong. 2022. Threshold value of ecological water table and dual control technology of the water table and its quantity in the salinized farmland around wetland in arid areas[J]. Hydrogeology &amp; Engineering Geology, 49(5): 42-51(in Chinese with English abstract).
  
  [14] Shin Sangmin, Danyal Aziz, Mohamed E. A. El-sayed, Mohamed Hazman, Lal Almas, Mike McFarland, Ali Shams El Din, Steven J. Burian. 2022. Systems Thinking for planning sustainable desert agriculture systems with saline groundwater irrigation: A review[J]. Water, 14(20): 3343.
  
  [15] Song Ge, Huang Jinting, Ning Bohan, Wang Jiawei, Zeng Lei. 2021. Effects of groundwater level on vegetation in the arid area of western China[J]. China Geology, 4: 527-535.
  
  [16] Sun Guanfang, Zhu Yan, Gao Zhaoliang, Yang Jinzhong, Qu Zhongyi, Mao Wei, Wu Jingwei. 2022. Spatiotemporal patterns and key driving factors of soil salinity in dry and wet years in an Arid Agricultural Area with shallow groundwater table[J]. Agriculture, 12: 1243.
  
  [17] Sun Hongyong , Liu Xiaojing , Zhang Xiying. 2018. Regulations of salt and water of saline-alkali soil: A review[J]. Chinese Journal of Eco-Agriculture, 26(10): 1528-1536.
  
  [18] Wang Jinzhe, Zhang Guanghui, Yan Mingjiang, Tian Yanliang, Wang Qian. 2020. Index weight analysis of groundwater function evaluation and zoning system in arid areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 36(22): 133-143(in Chinese with English abstract).
  
  [19] Wang Jinzhe, Zhang Guanghui, Cui Haohao, Wang Qian, Dong Haibiao, Haojing. 2020. System index attribute and application of groundwater function zoning in northwest inland area of China[J]. Journal of Hydraulic Engineering, 51(7): 796-804(in Chinese with English abstract).
  
  [20] Wang Yu, Li Junli, Guo Mugafu, Bao Anming, Hu Ruji, Zhao Shengnan. 2016. Temporal variation characteristics of surface area of Selim Lake from 1989 to 2014[J]. Arid Land Geography, 39(4): 851-860(in Chinese with English abstract).
  
  [21] Xia Jide, Wu Faqi, Zhang Qingfeng, Wang Jian, Xia Haojun. 2016. Evaluation of farmland pressure in six Northwestern Provinces based on visual angle of food security[J]. ShanXi Journal of Agricultural Sciences, 62(8): 95-98(in Chinese with English abstract).
  
  [22] Xu Ying, Ge Zhou, Wang Juan, Li Wei, Feng Shaoyuan. 2019. Study on relationship between soil salinization and groundwater table depth based on indicator Kriging[J]. Transactions of the Chinese Society of Agricultural Engineering, 35(1): 123-130(in Chinese with English abstract).
  
  [23] Yi Qing, Cheng,Yanpei, Zhang Jiankang. 2014. Analysis on the salt content characteristics of southern saline-alkali soil in Datong Basin and its causes[J]. Journal of Groundwater Science and Engineering, 2(1): 63-72.
  
  [24] Yin Lihe, Xu Dandan, Jia Wuhui, Zhang Xinxin, Zhang Jun. 2021. Responses of phreatophyte transpiration to falling water table in hyper-arid and arid regions, Northwest China[J]. China Geology, 4(3): 410-420.
  
  [25] Yuan Chengfu. 2020. Simulation soil water–salt dynamics in saline wasteland of Yongji Irrigation Area in Hetao Irrigation District of China[J]. Water Science &amp; Technology Water Supply, (1).
  
  [26] Zhai Jiaqi, Dong Yiyang, Qi Shenglin, Zhao Yong, Liu Kuan, Zhu Yongnan. 2021. Advances in Ecological Groundwater Level Threshold in Arid Oasis Regions[J]. Journal of China Hydrology, 41(1): 7-14(in Chinese with English abstract).
  
  [27] Zhang Fei, Yu Shanjiang, Ayinuer, Wang Dongfang. 2018. Ecological risk assessment due to land use/cover changes (LUCC) in Jinghe County, Xinjiang, China from 1990 to 2014 based on landscape patterns and spatial statistics[J]. Environmental Earth Sciences, 77(13):491.
  
  [28] Zhang He, Li Yan, Meng Yali, Cao Nan, Li Duansheng, Zhou Zhiguo, Chen Binglin, Dou Fugen. 2019. The effects of soil moisture and salinity as functions of groundwater depth on wheat growth and yield in coastal saline soils[J]. Journal of Integrative Agriculture, 18(11): 2472-2482.
  
  [29] Zhang Yiqing, Wang Wen’e, Hu Mingyu, Ling Gang, Hu Xiaotao, Peng Xiongbiao. 2022. Influence of bulk density and water content on soil electrical conductivity[J]. Agricultural Research in the Arid Areas, 40(3): 162-169(in Chinese with English abstract).
  
  [30] Zhou Yuangang, Zhao Ruifeng, Zhao Haili, Zhang Lihua, Zhao Min, Zou Jianrong. 2019. Effects of different fallow and wetting methods on soil and vegetation properties in the middle reaches of the Heihe River: a case study of Zhangye National Wetland Park[J]. Acta Ecologica Sinica, 39(9): 3333-3343(in Chinese with English abstract).
  
  [31] Zhuang Yanli, Zhao Wenzhi. 2008. Advances in the Condensation Water of Arid Regions[J]. Advances in Earth Science, 23(1): 31-38(in Chinese with English abstract).
  
  [32] 方丽章, 李艳红, 李发东, 朱海强. 2019.艾比湖湿地土壤水分-盐分-养分空间异质性分析[J]. 农业环境科学学报, 38(1): 157-167.
  
  [33] 冯天骄, 张智起, 张立旭, 徐炜, 贺金生. 2021. 干旱半干旱区生态系统凝结水的影响因素及其作用研究进展[J]. 生态学报, 41(2): 456-468.
  
  [34] 缑倩倩, 屈建军, 王国华, 肖建华, 庞营军. 2015. 中国干旱半干旱地区湿地研究进展[J]. 干旱区研究, 32(2): 213-220.
  
  [35] 孔东, 史海滨, 霍再林, 晏云, 李延林, 张义强. 2004. 河套灌区不同盐分含量土壤对向日葵生长的影响[J]. 沈阳农业大学学报, (Z1): 414-416.
  
  [36] 李勋章. 2016. 基于干旱区生态安全的博湖县地下水调控研究[D]. 新疆农业大学.
  
  [37] 刘鹏飞, 张光辉, 崔尚进, 刘少玉, 聂振龙. 2022. 旱区湿地周边盐渍化农田生态水位阈值与“水位-水量”双控技术[J]. 水文地质工程地质, 49(5): 42-51.
  
  [38] 王金哲, 张光辉, 崔浩浩, 王茜, 董海彪, 郝静. 2020. 适宜西北内陆区地下水功能区划的体系指标属性与应用[J]. 水利学报, 51(7): 796-804.
  
  [39] 王金哲, 张光辉, 严明疆, 田言亮, 王茜. 干旱区地下水功能评价与区划体系指标权重解析[J]. 农业工程学报, 2020,36(22): 133-143.
  
  [40] 王宇, 李均力, 郭木加甫, 包安明, 胡汝骥, 赵胜楠. 2016. 1989-2014年赛里木湖水面面积的时序变化特征[J]. 干旱区地理, 39(4): 851-860.
  
  [41] 夏积德, 吴发启, 张青峰, 王健, 夏浩军. 2016. 基于粮食安全视角的西北六省耕地压力评价[J]. 陕西农业科学, 62(8): 95-98.
  
  [42] 徐英, 葛洲, 王娟, 李伟, 冯绍元. 2019. 基于指示Kriging法的土壤盐渍化与地下水埋深关系研究[J].农业工程学报, 35(1): 123-130.
  
  [43] 翟家齐, 董义阳, 祁生林, 赵勇, 刘宽, 朱永楠. 2021.干旱区绿洲地下水生态水位阈值研究进展[J]. 水文, 41(1): 7-14.
  
  [44] 张一清, 王文娥, 胡明宇, 凌刚, 胡笑涛, 彭雄彪. 2022. 容重及含水率对土壤电导率的影响研究[J].干旱地区农业研究, 40(3): 162-169.
  
  [45] 周远刚, 赵锐锋, 赵海莉, 张丽华, 赵敏, 邹建荣. 2019. 黑河中游湿地不同恢复方式对土壤和植被的影响—以张掖国家湿地公园为例[J]. 生态学报, 39(9): 3333-3343.
  
  [46] 庄艳丽,赵文智.2008.干旱区凝结水研究进展[J].地球科学进展, 23(1): 31-38.
上一篇:环境规制、数字化与农业面源污染
下一篇:没有了
热门排行

在线客服:

无忧期刊网 版权所有   

【免责声明】:所提供的信息资源如有侵权、违规,请及时告知。

专业发表机构